Estimating Soil/Dust Ingestion through the Blood to Soil/Dust Lead Relationship

AEHS Foundation

24th Annual International Conference

March 18, 2014

Presenting Author: Susan Spalinger, TerraGraphics

Authors: Ian von Lindern, PhD, Marc Stifelman, Mara Thorhaug, Susan Spalinger, Casey Bartrem, Lindsay Stanek, PhD, Margrit von Braun, PhD

Presentation Outline

- Bunker Hill Superfund Site Background and History
- Approach
- Methods and Results
- Conclusions

Bunker Hill Company Mining and Smelter Complex, 1917-1981

Produced ⅓ the nation's lead,
½ the silver,
¼ zinc

 Idaho's largest employer

Waste and Air Pollution Producers

- Lead Smelter
- Zinc Plant
- Mills
- Mines
- Support Facilities
- Railroad

In 1973, one of the worst child lead poisoning events in U.S. history occurred at the Bunker Hill Smelter.

Blood Lead Levels Bunker Hill Site 1974 -2002

Biological Monitoring

- 1984 voluntary fixed-site screening was met with low participation
- 1985 door-to-door solicitation strategy to secure blood samples
- 1988 payment for participation was initiated for blood samples
- 2003 payment for participation ended, blood lead remediation action objectives met

PUBLIC HEALTH SERVICES
 CONTINUE TODAY

Intervention and Source Control

Objective:

- Minimize lead absorption while source control actions were underway
 - In-home intervention
 - Public awareness
 - Outreach and education

Industrial Complex Demolished and Disposed of in High Level Waste Repository

Common Area Cleanups Parks, Playgrounds, Schools, Daycares

Residential Property Cleanups

Yard Soil and House Dust Lead Concentrations Smelterville, 1988-2002

0 - 349.9 mg/kg

350 - 499.9 mg/kg

500 - 999.9 mg/kg

1,000 - 2499.9 mg/kg

2500 - 4999.9 mg/kg

0 - 349.9 mg/kg

350 - 499.9 mg/kg

500 - 999.9 mg/kg

1,000 - 2499.9 mg/kg

2500 - 4999.9 mg/kg

0 - 349.9 mg/kg

350 - 499.9 mg/kg

500 - 999.9 mg/kg

1,000 - 2499.9 mg/kg

2500 - 4999.9 mg/kg

0 - 349.9 mg/kg

350 - 499.9 ma/ka

500 - 999.9 mg/kg

1,000 - 2499.9 mg/kg

2500 - 4999.9 mg/kg

0 - 349.9 mg/kg 350 - 499.9 mg/kg 500 - 999.9 mg/kg 1,000 - 2499.9 mg/kg 2500 - 4999.9 mg/kg 5,000 and greater mg/kg

Subsurface Lead Contamination Below 1 Foot Smelterville after Remediation

1,000 - 2499.9 mg/kg

2500 - 4999.9 mg/kg

Data Collected in Combined Intervention / Remediation Program

- Spanning 15 years
- >5,000 Blood Lead Observations
- Paired with:
 - Residential Soil Lead Levels
 - House Dust Lead Levels
 - Community Environmental Measurements
 - Demographic, Housing, Health, Socio-economic Indices

Approach

- Select archived soil and dust samples for laboratory analysis
 - Total lead (EPA Method 6010b)
 - in vitro bioaccessibility, indicator of in vivo relative bioavailability
- Compare new total lead results to historical results
- Calculate age-specific ingestion rates through total lead uptake
 - Soil/dust partition model applied at Bunker Hill (40:30:30)
 - Structural equation modeling (SEM)
- Use ingestion rates and bioavailability data in the Integrated Exposure Uptake Biokinetic Model (IEUBK) for best fit

Comparable & Representative – Soil Lead

Comparable & Representative – Dust Lead

Absolute Bioavailability Results

	Soil		House Dust	
City	Number of Samples	Average Bioavailability	Number of Samples	Average Bioavailability
Kellogg	24	0.34	66	0.28
Page	7	0.33	12	0.27
Pinehurst	33	0.32	74	0.28
Smelterville	8	0.39	36	0.30
Wardner	1	0.30	4	0.27
Total	73	0.33	192	0.28

Ingestion Calculations - Exposure Pathways

- Bunker Hill Model 40:30:30 partition
 - 40% from house dust
 - 60% from residential soil comprised of:
 - 30% from home yard soil
 - 30% from community-wide soils

- IEUBK Default Model 55:45 partition
 - 55% from house dust
 - 45% from residential yard soils
 - no contribution from community soils

IEUBK Model

Source: USEPA 1994

Ingestion Calculations – 40:30:30

1.
$$UP_{total} = BLPb/CR^{-1}$$

where

- UP_{total} = total lead uptake, μg/day
- CR⁻¹= Harley Kneip age-specific blood lead response coefficient, unitless
- BLPb= individual blood lead concentration, μg/dL

2.
$$UP_{total} = UP_{air} + UP_{diet} + UP_{water} + UP_{sd}$$

Ingestion Calculations – 40:30:30

where

- UP_{sd} = combined lead uptake from soil and dust, $\mu g/day$
- C_i= lead concentration, mg/kg
- IR_i= ingestion rate, mg/day
- ABS_i = bioavailability, unitless

Ingestion Calculations – 40:30:30

$$IR_{sd} = 1000 \times \left[\frac{UP_{sd}}{(C_d \times 0.4 \times ABS_d) + (C_{ys} \times 0.3 \times ABS_{ys}) + (C_{cs} \times 0.3 \times ABS_{cs})} \right]$$

40:30:30 Calculated Ingestion Rates

IEUBK - Observed vs. Predicted Mean Blood Lead Levels (40:30:30 & IEUBK Default)

Ingestion Calculations – SEM

- SEM regression using lead uptake (UP_{sd})
 - SAS v8 PROC GLM and PROC CALIS
- Several iterations due to various combinations of neighborhood means (200, 500, and 1000 feet radii) and community means
- Successive variables were added to the model by
 - Chi-Square criteria for fit (p>0.05)
 - Overall improvement in Goodness of Fit statistics
- Parameter estimates = <u>ingestion</u> and <u>partition</u>

SEM Calculated Ingestion Rates

Age (years)	40:30:30 Ingestion Rate (mg/day)	SEM Ingestion Rate (mg/day)	IEUBK Ingestion Rate (mg/day)
0-1	84	82	85
1-2	94	90	135
2-3	67		135
3-4	62	60	135
4-5	65		100
5-6	52		90
6-7	51		85
7-8	50	58	
8-9	56		
9-10	58		
Total 0-7	68	67	109

SEM Exposure Pathways Results

- 45%–50% house dust
- 25%–28% yard soil
- 14%–18% neighborhood soil (within 500 feet of the home)
- 7%–11% community soils

depending on model form and variable definitions

IEUBK – Observed vs. Predicted Mean Blood Lead Levels (SEM)

Conclusions

- Calculated soil/dust ingestion rates:
 - 39% lower than recommended IEUBK ingestion rates
 - Reflect residential exposures, including house dust, yard soils, neighborhood and community soils

Exposure pathways, or partitions, impact IEUBK Model predictability

Do not significantly impact the Bunker Hill cleanup

Acknowledgements:

- EPA and the Regional Applied Research Effort funding
 - Lindsay Stanek, PhD
 - Marc Stifelman
- EPA Region 10's Manchester Environmental Laboratory
- TerraGraphics Environmental Engineering staff
- TIFO staff

Questions?